Thermal Management Protection Solutions For Battery Energy Storage Systems

By Adam Wells, Solutions Engineer, Pfannenberg USA

Cooling systems help achieve better battery performance, durability, and safety

Battery energy storage systems (BESS) are helping to transform how the world generates and consumes electricity as we transition from large-scale fossil fuel plants to renewable sources. The market for BESS is projected to grow at a compound annual growth rate (CAGR) of 30 percent from 2023-2033 according to IDTechEx. What’s more, the global cumulative stationary battery storage capacity is expected to reach 2 terawatt hours (TWh) within ten years.

What’s the catch? The market is challenged by the basic fact that electrochemical energy storage is notoriously vulnerable to overheating, risking sudden fire and explosion, in addition to causing degraded performance and shortened lifetime. Cooling systems are critically important for BESS, providing the thermal stability that is crucial for battery performance, durability, and safety. If applied correctly, the solutions will reduce battery degradation and damage, and minimize downtime.

Thermal Stability and Uniform Temperature 

In general, it is best to keep batteries at a moderate, consistent temperature to ensure their optimal performance and longevity. Exposure to extreme temperatures, either hot or cold, can damage batteries and cause hazardous events.

The specific temperature range that batteries require to operate safely varies depending on battery type and design. While new battery technologies are being developed every day, lithium-ion batteries continue to dominate energy storage systems due to falling battery costs and increased performance with less weight and space requirements giving better energy density compared to other battery types. It is likely that lithium-ion will continue to be the most common BESS technology for the foreseeable future.

According to the US National Renewable Energy Laboratory, the optimal temperature range for lithium-ion is between 15 °C and 35 °C. An ambient temperature of about 20°C or slightly below (“room temperature”) is ideal; if a battery operates at 30°C, its lifetime is reduced by 20 percent. At 40°C, the losses in lifetime approach 40 percent, and if batteries are charged and discharged at 45°C, the lifetime is only half of what can be expected at 20°C.

It is also equally important to maintain uniform temperature throughout the system. Avoiding hot spots is crucial to preventing damage and mitigating the risk of triggering a chain reaction that leads to catastrophic thermal runaway.

Causes of Battery Overheating

One key factor contributing to overheating is use in applications that require rapid charging/ discharging. These are referred to as having a high C-rate, defined as the charging or discharging current divided by the capacity (the amount of energy the battery can hold). Applications with a  high C-rate and frequent cycling generate more heat.

Another factor is high ambient temperature, which can damage batteries in several ways. Elevated temperatures lead to an increased rate of side reactions, causing attrition of active material and resulting in a build-up of resistance at the electrode surface. Operation of lithium-ion batteries at high temperatures will also accelerate the aging process and lead to performance degradation.

Paradoxically, low ambient temperatures can cause more problems with internal overheating than high ambient temperatures. Cold temperatures can result in viscosity changes in the electrolyte that lead to sluggish ion transport, resulting in higher resistance and heat generation.

Designing an Optimal Cooling Solution – Liquid or Air Cooling?

BESS thermal management solutions include liquid and air cooling; the optimal solution depends primarily on the application’s C-rate and environmental conditions. The most demanding thermal management applications, such as large-scale BESS installation and high C-rate applications, require active liquid cooling. Smaller installations with low C-rate applications can be safely and efficiently operated with air cooling.

Liquid cooling

Liquid cooling is extremely effective at dissipating large amounts of heat and maintaining uniform temperatures throughout the battery pack, thereby allowing BESS designs that achieve higher energy density and safely support  high C-rate applications.

Multiple versions of chillers are available to optimize the layout of the cooling system. For example, Pfannenberg offers two layout options: A stand-alone chiller can be placed inside the BESS. Each unit provides up to 12kW of cooling, and multiple units can be easily combined to support the highest cooling load requirements. Alternatively, a compact version is designed to be mounted outdoors on the cabinet door, for a small footprint that allows easy integration inside battery cabinets and enclosures. Both solutions safely operate between -25 and +50°C and offer up to 800 V DC power supply to directly connect with the battery system, all while not needing any power conversion.

Air cooling

Air cooling systems provide a cost-effective cooling solution for smaller stationary energy storage systems operating at a relatively low C-rate.

For example, Pfannenberg’s DTS Cooling Unit seals out the ambient air, and then cools and re-circulates clean, cool air through the enclosure. The closed loop design isolates the external ambient air from the internally conditioned air eliminating the risk of contaminants entering the cabinet. Thehermetically sealed compressor guarantees 100 percent cooling capacity efficiency.

For applications where the ambient air is always cooler than the temperature required inside the enclosure, filter fans, which use natural convection of the air to circulate air and dissipate heat, are extremely cost-effective.

Energy storage plays an important role in the transition towards a carbon-neutral society. BESS systems depend on cooling systems that provide the thermal stability that is crucial for battery performance, durability, and safety. and if applied correctly, will reduce battery degradation and damage, and minimize downtime.

Pfannenberg New Brochure: Thermal Management and Signaling Solutions for the Water Industry

We are excited to announce the release of our latest brochure that highlights Pfannenberg’s Broad Range of Products for the Unique, Demanding Requirements of the Water and Wastewater Industry.

Dedicated Solutions for YOUR Application

Pfannenberg’s experts understand the Water Industry specific requirements and safety protocols to help you find the best solution for your needs. Water and wastewater treatment processes must be efficient and cost-effective in order to improve production costs. From wastewater treatment facilities to lift stations and pumping systems, Pfannenberg’s innovative Thermal Management and Signaling Solutions provide critical protection for manufacturing, processes and personnel, ensuring a cost-effective approach, longer service life and energy savings.

Reliable, Efficient, Thermal Management Solutions

Solutions include cooling systems that can withstand extreme conditions like corrosion due to Hydrogen Sulfide gas and signaling systems that notify employees of life-threatening situations like toxic gas leaks, as well as other solution essential to protecting the safety of employees and the efficient operation and long service life of equipment.

Pfannenberg’s thermal management solutions for enclosure electronics range from the highly energy efficient Original Filterfan® to the PWS Air/Water Heat Exchangers that can remove a considerable amount of heat while isolating sensitive electronics from a corrosive atmosphere outside of the enclosure.

For example, the air/water heat exchangers are widely deployed to protect variable frequency drives located in pump control panels from the harmful effects of H2S sour gas.

Safety Guaranteed with Audible and Visual Signaling

Signaling systems are also critically important to keeping employees safe and systems running smoothly in wastewater treatment facilities.

Pfannenberg has developed a broad range of audible and visual signaling technologies to provide:

> An Indication of the status of a machine, process or test procedure

> A Warning of a dangerous situation or required corrective action

> An Alarm to alert personnel of life threatening and emergency situations.

 

Services Programs designed to keep your applications up and running 24/7

Pfannenberg also offers a range of service programs to keep wastewater facilities up and running, including factory certified refurbishment, field repair and preventive maintenance options.

 


Talk to Our Water Industry Experts Now!

CONTACT US

 

Liquid Cooling Solutions, the Best Choice for Complete Plant-wide Machine Cooling

When it comes to Thermal Management, cooling each machinery or electrical cabinet separately is usually the solution chosen by most of the industries. However, this leave a valuable optimization potential untapped.

Maximum efficiency cooling for a whole system can be achieved with a cooling system solution consisting of air to water heat exchangers and water-based chillers. These ‘Liquid Solutions’ cool the complete assembly and offer significant benefits compared to traditional approaches such as cooling with ambient air.

How does it work?

A closed loop cooling or semi open system is used to provide cooling to the entire plant assembly. These might be electrical enclosures, processes or individual machine parts such as spindles, motors or hydraulic equipment.

Liquid Cooling Solutions

In a closed-loop system, electrical enclosures or assemblies are cooled with cold water at a specified inlet temperature which is pumped through a pipe system. Flowing through the electrical enclosures or assemblies, the water is warmer when it returns to the chiller. This creates a temperature delta which the chiller equalizes by cooling the water from the outlet temperature down to the inlet temperature.

The process chiller system feeds cold water into the application inside the factory hall or outdoors and the constant flow temperature significantly improves machine availability and machining accuracy. There is no other cooling media being as efficient as water cooling.

The best Liquid Cooling Solution: Combined Chillers and Air to Water Heat Exchangers

The combination of application-specific process chillers with air to water heat exchangers is particularly suitable for applications in which heat must not be dissipated in the immediate environment, where the ambient air is too aggressive to allow the use of traditional enclosure cooling units, where high-level protection is required (up to IP 65) or where the cooling devices must be maintenance-free.

The air to water heat exchanges are all cut-out-compatible and fit in the housing of all available electrical enclosures. This means that machine and plant manufacturers, end users and distributors benefit from higher flexibility, and save costs on warehousing and servicing.

The advantage of an intelligent system solution with application-specific chillers and air to water heat exchangers is that the dissipated heat can be moved directly from the factory shop floor via air channels or an outside chiller system. It also offers very high reliability and problem-free operation as all the components of the system are chosen to work together perfectly. Low maintenance, cut-out-compatibility and energy efficiency optimize energy consumption and keep operating costs to a minimum. The integrated concept and numerous options allow the system to be adapted to almost any application, even with changing conditions.

Application-specific configuration

EB 2.0 Group

Pfannenberg’s experts work with their customers to develop application-specific chiller systems. To achieve exactly the right configuration, it is essential to:

  • First determine the heat load for the whole assembly.
  • The second step is to specify the type of cooling medium (ideally water), the target temperature and the flow quantity which the system must deliver in the actual application. This process should take into account how the heat is transmitted to the cooling medium and the type of refrigerant necessary to operate the refrigerant circuit. The type of cooling medium and which chiller model is used depends on whether usable process water is available at the factory and if so, whether it is warm or cold (see overview of device variants).
  • An analysis of the environmental conditions prevailing where the chiller system is to be installed is also carried out. For example, there might be high temperatures and contaminated air indoors, while outdoors the temperature might fluctuate widely. Both of these factors can have an impact on the configuration of the chiller system, making accessories such as filter fans or crankcase heating necessary. Taking the temperature of the cooling medium at the inlet and the highest likely ambient temperature as a basis, Pfannenberg determines the best chiller model with the correct characteristic curves for the job.
  • The final stage in the application-specific configuration is to think about whether the selected standard version meets the other requirements of the application, such as performance data, control and regulation options, available space, certifications and color. It is then decided whether standard options are necessary or helpful and if so, which. With numerous available options available, the EB chillers meet the requirements of practically any application in industrial environments.

Pfannenberg offers installation-ready chiller systems with performance specifications ranging from 1 to 160 kW. The modular concept of the EB series allows users to select from up to 30 standard options. These include hydraulic bypass/relief valves, flow monitors, tank level monitors, air filters, air filter monitors, check valves, solenoid valves, single alarm display and UL certification. Special solutions are also available. Click here to determine the correct chiller for your application!


With products that include filterfans, heaters, industrial air conditioners, air to water heat exchangers, packaged chillers, and signaling devices, Pfannenberg offers a full range of thermal management solutions for all types of industries. Standard options such as stainless steel materials, NEMA 4/4X enclosures, and washdown duty construction allow these time-tested products to be seamlessly incorporated into even the most demanding applications.

Have a question regarding which equipment is best for your application? Ask Us Here.

Reliable Enclosure Cooling for Commercial Bakeries

Customer Requirement

Pfannenberg worked with a bakery end user to develop a cooling solution for their control cabinets.  Most of the OEM equipment installed in the bakery called for air conditioners to cool the drives. PLCs and additional electronics. Most times Cooling units can be a convenient and effective method for cooling electronics, except when located in dusty, humid areas within the plant.

These AC units failed regularly and had to be replaced. This was not a sustainable solution as the customer had constant issues with clogging coils and overheating panels.

Once a panel overheated they had to either: not operate the machine, or operate the cabinets with the doors open. This would let all the contaminants that were hurting the AC units into the cabinet, damaging the drives and other components.

The Pfannenberg Solution

To use the chilled Glycol that was already present for other machine processes to provide the cooled liquid source for our PWS Air to Water Heat Exchangers.

The solution included:

  • A reliable cooling solution designed for harsh environments
  • Reduced maintenance.  Once installed the units only have just one moving part, so regular maintenance is not necessary
  • Eliminating equipment failures, means greater uptime
  • Reduced energy costs with the PWS units
  • UL Tested NEMA Type 4/4X – washdown

Customer Benefits

Pfanneneberg’s PWS Series Air To Water Heat Exchanger was the precise solution for the problems our customer experienced. Incorporating Air/Water Heat Exchangers improved performance, reduced maintenance, was energy efficient, and prevented unplanned repairs.

 

Pfannenberg’s Custom Chillers Deliver Liquid Cooling for Chemical Synthesis Reactor


Pfannenberg fits chiller into confined space within a packaged Ferrator® targeted for water and wastewater treatment in third world countries.

In their quest to develop an affordable Ferrate synthesis system, Ferrate Treatment Technologies, LLC of Orlando turned to Pfannenberg for help with developing a liquid cooling solution for a small, cabinet based system. While already using Pfannenberg chillers for larger, trailer-based Ferrate synthesis systems, standard packaged chillers were capable of integrating seamlessly within the concept of the self-contained cabinet-based Ferrator system.

The “Packaged Ferrator®”  overcomes the obstacles and high cost of using Ferrate, a highly potent oxidizing disinfectant for water and wastewater treatment. The portable Ferrate sythesis system is a game changer for delivering effective treatment for remote locations in underdeveloped nations.

The Treatment or “Cleansing” of Water Takes on Two Primary Requirements:

  • Eliminating contamination within acquired water prior to using or drinking (potable water)
  • Eliminating contamination within used water prior to its release back to the environment (waste water).

For both requirements, an element of cleansing involves disinfection which can be accomplished by several methods intended to kill, remove, or oxidize the contamination. Techniques include mechanical separation such as filtering and reverse osmosis; exposure to ultraviolet light and radiation; and the addition of chemicals such as chlorine or ozone, and now Ferrate. Each technique has its own advantages, disadvantages, effective cost ratio, and ability to scale up in order to treat the affected volume of water.

Oxidation is a process which causes chemical decomposition as well as breakdown of both organic and non-organic substances and is vital for the removal of contamination from water. As a chemical additive, Ferrate possesses extraordinary oxidation capabilities, however, it has historically been quite expensive to manufacture, which has limited its use primarily to laboratory research applications.

Luke Daly, CEO of Ferrate Treatment Technologies, LLC with the packaged Ferrator system

Attempts to produce economical and commercially viable quantities of Ferrate had seen limited success until Ferrate Treatment Technologies, LLC of Orlando (FTT) changed the game by creating a streamlined synthesis process and point-of-use production device. By eliminating storage, handling, and transportation costs associated with a pre-packaged product, FTT has cut Ferrate deployment costs by more than 85%.

The breakthrough device is called a Ferrator, initially available as a trailer or skid mounted system with various capacities targeted for water treatment applications in rural areas. The Ferrator is suitable for a variety of applications including municipal wastewater, industrial wastewater, drinking water, ship ballast water, and environmental water restoration.

Ferrate is highly effective for oxidation, disinfection, coagulation, de-watering, and deodorizing. Ferrate treatment removes phosphates and heavy metals; kills spores, bacteria, viruses and protozoa; removes colors and odors; and its by products are nontoxic.


Composition of the Ferrator

The Ferrator synthesizes Ferrate on-site from three raw ingredients: iron, bleach, and caustic, which are pumped to a homogenizer and reaction chamber. The final product is a liquid which is stored in a tank. Both the reaction and storage areas require cooling, which is provided by Pfannenberg chillers.

When FTT encountered problems with units from another manufacturer they contacted Pfannenberg to provide EB 150 chillers for skid-based systems.

Due to their successful experience with Pfannenberg chillers for system based electrical enclosure cooling, FTT turned to Pfannenberg once again for assistance with a project that required a chiller to fit in a smaller scale Ferrator system into an enclosure. Initially, a CC 6301 packaged chiller was used successfully; however, new design criteria required further miniaturization and this standard packaged chiller would no longer fit. The Pfannenberg engineering team went to work on designing, building, and delivering and open frame unit based on the CC 6301 that could fit within the confines of the small Ferrator enclosure.

” Without Pfannenberg’s cooperation, full support and timely expertise, FTT could never have achieved this historic build for a major philanthropic foundation that is committed to improving the lives of impoverished people in developing countries.” -Luke Daly, CEO (Ferrate Treatment Technologies, LLC)

The small scale Ferrator is targeted for use in third world areas for the treatment of human wastewater and drinking water. Here, the efficiency of the self-contained system will permit water purification in remote areas in which there are no sewer systems, water distribution systems, or central water treatment facilities. The small size of the Ferrator permits it to be readily transported to such remote areas and even be used as a portable device for use at multiple locations. The goal is not only to reduce the adverse effects of discharging untreated wastewater to the environment, but also improve human health by reducing contamination in water available for drinking.


Click here to download the Case study in PDF

The Future of Food and Beverage Preservation Utilizing Chillers

High Pressure Processing (HPP) Technology guarantees a longer lasting freshness and high quality taste for products.

With health and wellness trends dominating the Food and Beverage industry, manufacturers are seeking new equipment to help support maintaining their “healthy” quality throughout the supply chain.Fresh fruits, vegetables, raw juices, and meats have a relatively short shelf life.  Since there are no added chemicals to extend the shelf life – manufacturers are looking for new technology to help extend their product life.  HPP Technology was introduced, not only to extend the shelf life of such products but also maintain the fresh taste.

How It Works:

HPP is a cold pasteurization method that takes food (sealed, covered, or bottled) to a high level of pressure (by water) between 43,000 to 87,000 psi for typically 1-3 minutes. Packaged products will be placed inside a container which then is placed into the HPP machine.  Once in the machine it is subject to cold water and high levels of pressure. Such levels of pressure are more than the ocean’s Mariana Trench and various hydraulic systems.

Pfannenberg’s process chillers are an ideal solution for the temperature regulation throughout this process. Such products are placed under cold water pressures that have to be maintained thoughout the HPP proecess. Temperature control is crucial to be able to prevent from the product going bad.

There have been other technologies introduced, but they have not been able to maintain vitamin levels and flavors.

Benefits of HPP:

  • Environmentally friendly – water can be recycled
  • Maintains food quality and taste
  • Avoids the need for food preservatives and chemicals – maintains natural and organic product
  • Extends shelf-life
  • Kills pathogens – such as Salmonella, Listeria, etc.

Ideal for:

  • Juices
  • Salsas
  • Cooked Meats
  • Fish
  • Fruits
  • Vegetables

While foods with a high level of acidity work well with HPP applications, there are some vegetables and food items that cannot be used for HPP because the process does not kill certain pathogens without the use of heat. HPP is environmentally friendly and a natural process that preserve tastes and maintains the quality and freshness – relative to chemical treatments and traditional thermal pasteurization methods.


Click here to discover our complete range of chillers!


Visit Pfannnenberg at ProFood Tech 2017 in Chicago – Booth #1847

Topics: North AmericaWater CoolingFood and BeverageFood & BeverageChillers

The Technology of Cooling Part 4: Closed Loop Liquid Cooling Solutions

1. Air to Water Heat Exchangers

Pfannenberg Air to Water Heat Exchangers use a supplied water source to remove the heat from the electrical cabinet. The heat from the enclosure is transferred to fluid and the heated fluid is then piped away adding no heat to the ambient environment.  Because there is no heat transfer to the ambient environment, there is no need to de-rate the units performance in high ambient conditions.

 

How do I know if a Air to Water Heat Exchanger is the right product for my application?

  • If there is a chilled water supply readily available at the enclosure.
  • If the environment has extreme conditions like extremely high ambients, extremely dirty or caustic, that make other systems not applicable.

Properly sizing a Air to Water Heat Exchanger

To properly size an Air to Water Heat Exchanger you must know the required cooling capacity in Watts, available water temperature and the dimensions of the unit and enclosure.

Utilizing performance curves to properly size cooling units:

Pfannenberg utilizes the DIN standard 35/35 °C when rating our cooling units. Many other companies use 50/50 °C, which provides a higher, non-usable value. Customers should use their own application temperatures to determine the proper cooling capacity of the system.

Important information when utilizing Air to Water Heat Exchangers for enclosure cooling:

  • The performance of an Air to water Heat Exchanger is directly related to the difference in the water temperature and the air temperature inside the enclosure.
  • To manage condensation, an external condensation evaporator (KVDTX) can be used.
  • The enclosure should be sealed to prevent the inflow of ambient air.
  • Use the door contact switch to impede operation with open doors and consequent excessive accumulation of condensation.
  • Setting the temperature to the lowest setting is not the optimal solution due to the condensation issues. The value we have preset on the cooling unit is a sound compromise between cooling the inside of the enclosure and the accumulation of condensation.
  • Make sure unit is level.

2. Chillers

A chiller uses a refrigeration cycle to remove the collected heat from a circulating liquid. As the liquid moves through a system of tubes and pipes it absorbs the heat generated by equipment and processes.  This generated heat is then transferred by the liquid back to the chiller where it is dissipated. Fluid is cooled and sent back into the system.

 

How do I know if a Chiller is the right product for my application?

  • When higher heat loads that exceed traditional enclosure cooling methods need to be managed.
  • When precise temperature control is required as part of the manufacturing process.
  • Large fluctuations in heat load requirements need to be managed.
  • It allows the source of cooling to be located separately from harsh environments.

 

Selecting the correct Pfannenberg Chiller

Choosing the best packaged chiller to meet the demanding requirements of today’s industrial applications can be complicated. For that reason, Pfannenberg designed a 6 step guide to help you select the best chiller depending on your environment, process and type of application. Click on the picture to open the PDF or use this link!

 

Important information when utilizing Chillers:

  • Chillers can be installed indoors if the area around the unit is relatively clean and the air is temperate.
  • Locating the chiller outside can be a good option and can improve the efficiency of the chiller depending on temperature.
  • Extreme temperatures can cause capacity issues or the need for additional options such as a low ambient package.
  • A chiller should be sized as close to the required capacity based on the desired chilled liquid supply temperature and the highest expected ambient temperature.

3. Combined Chillers and Air to Water Heat Exchangers

liquid_cooling_3D.jpg

When a Liquid Cooling Source is not available on site, use the combination of chillers and air to water heat exchangers to simplify the cooling of your processes, machines and controllers as part of a system based solution.

Via a closed pipeline system that uses a highly economical supply of cooled liquid (e.g. water, glycol or oil) as the cooling medium, temperature can be managed within your process and as the cooling medium for the air conditioning of control cabinets. When cooling cabinets with PWS Air To Water Heat Exchangers the thermal management is 100% independent from the ambient temperatures at the installation location.

Click here for more detailed information about Closed Loop Liquid Cooling Solutions!


A properly selected Thermal Management is key to guarantee the longevity of critical electronics. Pfannenberg place the knowledge and technical expertise of its engineers at your disposal for you to find the best solutions for your requirements.

Find the 3 previous articles of this “Technology of Cooling” serie:

Pfannenberg Food & Beverage Applications: Air/Water Heat Exchangers

The Complete Liquid-Cooled Solution for F&B Industrial Control Enclosures

For over 50 years Pfannenberg has been a leader in thermal management solutions.  From simple Fan Cooling and Packaged Air Conditioners to more complex water cooled applications, our expertise helps ensure industrial electronics operate at peak efficiency and extended service life.

Pfannenberg’s Air To Water Heat Exchangers offer a solutions to fix your thermal management problems in washdown areas of the plant or areas with high amounts of particulate . The sealed cabinet provides contaminant-free component cooling without adding heat to the local environment.  It provides an excellent economic solution where plant water is available or when used in conjunction with a process chiller.  It’s sealed design and available stainless steel, NEMA Type 4/4X construction provides a maintenance free solution with no exposed fans or maintenance of filters required.

Typical Food and Beverage Applications:

  • Ingredient Mixers
  • Product Cooling/Drying
  • Packaging Automation Equipment
  • Inspection Machines
  • Oven Controls

For applications which require local enclosure cooling using a remotely located source of refrigeration, PWS Series Air To Water Heat Exchangers provide the perfect solution.  Paired with our CC or  EB Series Chillers, the air to water heat exchanger provides a total cooling solution that manages process and/or control enclosure heat gain and effectively removes it from the processing area.  Single source responsibility for the complete system ensures properly matched components that are engineered to work together – and to provide a custom fit to the most complex food processing equipment.


Topics: Air To Water Heat ExchangersEnclosure CoolingCooling UnitsThermal ManagementNorth AmericaWater CoolingPackaged ChillersFood & Beverage

Liquid Cooling Solutions for Commercial Bakery Electrical Enclosures


Are the VFDs in your Commercial Bakery failing due to high amounts of flour and moisture entering your electrical enclosure?

Pfannenberg is your proven partner for complex thermal management problems in the baking industry. High security classes of equipment and corrosion-resistant construction materials resist even the most difficult ambient conditions.

Looking for another energy savings solution? Pfannenberg’s PWS Air To Water Heat Exchangers are ideal for cooling your electrical components. Designed for maintenance free operation in the most demanding areas of a plant.

Click here to download the NEW Pfannenberg Bakery Flyer!

Also, be sure to visit us at IBIE 2016 in Las Vegas, NV — October 8th-11th at Booth #9247!

Topics: Air Water Heat ExchangersEnclosure CoolingCooling UnitsThermal ManagementNorth AmericaWater CoolingFood & Beverage

The Advantages of Air To Water Heat Exchangers for Thermal Management in Harsh Environments


Money-saving approach yields longer service life while conserving energy.

Control Panel Cooling Technique Helps Mitigate Hydrogen Sulfide Corrosion Problems with Wastewater Pumping Systems

Air To Water Heat Exchangers provide an energy efficient and reduced manintenance method for cooling electrical control panels.

Enclosure Cooling Units offer a straightforward active-cooling technique for pump control panels, however, they are not necessarily the best choice for all installation locations. Dirt, dust, and other airborne contaminants can clog condenser coils; while corrosive gasses in the environment can lead to premature failures.On the other hand, Air To Water Heat Exchangers can satisfy the same requirements without circulating ambient air within the housing, thereby eliminating the clogging and corrosion problems associated with airborne contamination.

A common threat to organic wastewater handling and treatment systems is the presence of hydrogen sulfide gas. Not only is this gas toxic to humans, but it also contributes heavily to corrosion problems in pipes, structures, instrumentation, and electrical systems. Lift stations and pumping systems are particularly vulnerable as H2S sour gas readily attacks copper used in wires, electrical contacts, and cooling units used on motor control centers (MCC’s).

Electronics cooling is vital for MCC’s containing the variable frequency drives (VFD’s) that are used to maintain efficient operation by conserving energy through regulating the speed at which pumps operate. Since VFD’s generate a considerable amount of heat, it is necessary to employ an active enclosure cooling technique in order to keep VFD’s operating within acceptable temperature limits. The absence of effective cooling will quickly allow VFD’s to overheat, shut down, or even catastrophically fail. In addition to being an economic loss, such outages disrupt production and affect the efficiency of plant operations.

Effective electrical enclosure cooling for environments where H2S gas is present must utilize a closed loop technique to ensure that sour gas is not introduced into the enclosure where it could harm wiring, electrical connections, switches, and other components. In fact, for many installations it is advantageous to deploy an air or nitrogen purge system which creates a positive pressure within the enclosure in order to keep undesirable ambient elements, including sour gas, outside of it. As opposed to an open loop system that uses fans to draw ambient air into and push heat out of the enclosure, a closed loop system maintains isolation of the ambient air and permits the NEMA rating of the electrical enclosure to be maintained. Examples of closed loop cooling equipment for electrical enclosures include cooling units (also known as enclosure air conditioners or enclosure AC) and Air To Water Heat Exchangers.

Cooling units offer the advantage of a being a plug and play solution – they simply hang onto the outside of the enclosure and are connected to power already available inside the enclosure. However, these compressor-based refrigeration systems consume a fair amount of energy and require periodic maintenance. Additionally, to endure the sour gas environment, exposed copper pipes and condenser coils must be treated with a conformal coating – which is not necessarily standard. Over time, the need to clean condenser coils – which may require partial disassembly of the cabinet – can lead to scratched paint, compromised coatings, and eventual corrosion.

Air To Water Heat Exchangers offer several advantages making them the preferred method for closed-loop, electrical enclosure cooling. Acquisition and operating expenses are significantly lower than those of a compressor-based cooling unit.

Additionally, this product is virtually maintenance free and since there is no ambient air circulation within the unit, there is no risk of H2S sour gas corrosion to internal components.

There are, however, two challenges with acquiring and implementing these units:

  • The units must be specified as the solution of choice with the MCC or pump system integrator.
  • The units must be connected to a viable source of clean water or coolant to circulate through the heat exchanger coil.

Another viable implementation is to consider retrofitting cooling units with air-to-water heat exchangers. This modification can be readily accomplished without difficulty since some units share the same enclosure cut-out. For dissimilar cutouts, an adaptor plate may be required to reduce the size of the opening.

Click here to download the Case study in PDF

Need more information on Pfannenberg’s PWS Air to Water Heat Exchangers? Click here and discover all the advantages of this product!


Topics: Air To Water Heat ExchangersEnclosure CoolingThermal ManagementWater CoolingWater TreatmentWastewater Treatment